Mexico has 30% of its land under high seismic risk

Following an article published on the seismological risk in spain, the possibility of publishing a similar story focused on Mexico arose. Mexico has a great seismic activity and has in particular an area that has attracted the attention of researchers for decades: The Guerrero Gap.

The area known as the Guerrero Gap is an 110 kilometers area long where no major earthquake has been recorded for more than a century, despite being located in a zone of high seismic activity. In a country where every year more than a thousand earthquakes of magnitude greater than 3.5 are registered, this place attracts the attention of experts: how much energy has accumulated in this place and when will it detonate?

Copala

guerrero

Acapulco

Placa de Cocos

Placa

Norteamericana

Avanza 5,4 cm al año

Brecha de

Guerrero

1

Fosa

Mesoamericana

Papanoa

2

Océano Pacífico

Zihuatanejo

Norte

La brecha sísmica de Guerrero podría sufrir próximamente un terremoto de magnitud 7 o superior. El mapa muestra todos lo sismos () de estas características ocurridos desde 1911.

La placa Cocos se desliza bajo la placa Norteamericana (subducción). Este fenómeno genera terremotos de gran magnitud a lo largo de la fosa Mesoamericana.

Copala

guerrero

Acapulco

Placa de Cocos

Placa

Norteamericana

Avanza 5,4 cm al año

Brecha de

Guerrero

1

Fosa

Mesoamericana

Papanoa

2

Océano Pacífico

Zihuatanejo

Norte

La placa Cocos se desliza bajo la placa Norteamericana (subducción). Este fenómeno genera terremotos de gran magnitud a lo largo de la fosa Mesoamericana.

La brecha sísmica de Guerrero podría sufrir próximamente un terremoto de magnitud 7 o superior. El mapa muestra todos lo sismos () de estas características ocurridos desde 1911.

Costa Chica

Copala

Placa de Cocos

7,8 (1957)

7,1 (2017)

Avanza 5,4 cm al año

230 km

Acapulco

Placa

Norteamericana

Brecha de

Guerrero

110 km

1

Fosa

Mesoamericana

Papanoa

Océano Pacífico

2

Estado de

guerrero

Zihuatanejo

Norte

La brecha sísmica de Guerrero podría sufrir próximamente un terremoto de magnitud 7 o superior. El mapa muestra todos lo sismos () de estas características ocurridos desde 1911.

La placa Cocos se desliza bajo la placa Norteamericana en un proceso conocido como subducción. Este fenómeno genera terremotos de gran magnitud a lo largo de la fosa Mesoamericana.

Costa Chica

Sierra

7,8 (1957)

Placa de Cocos

Copala

7,1 (2017)

Avanza 5,4 cm al año

230 km

Acapulco

Placa

Norteamericana

110 km

Fosa

Mesoamericana

Brecha de

Guerrero

madre

2

7,5 (1911)

1

Papanoa

Estado de

guerrero

del

Océano Pacífico

sur

Zihuatanejo

Norte

La brecha sísmica de Guerrero podría sufrir próximamente un terremoto de magnitud 7 o superior. El mapa muestra todos lo sismos () de estas características ocurridos desde 1911.

La placa Cocos se desliza bajo la placa Norteamericana en un proceso conocido como subducción. Este fenómeno genera terremotos de gran magnitud a lo largo de la fosa Mesoamericana.

This article offered me the opportunity to get my first taste of Blender. The famous software for the elaboration of three-dimensional graphics has earned a place during the last years in the field of Cartography, especially in the use of its capabilities to create a more realistic lighting than the traditional Hillshades offered by GIS software such as QGIS.

In order to create a scene with real elevation data, Blender needs a height map: a black and white image where the pixels closest to the white represent the highest altitude and the black ones the lowest. This data can come from a digital elevation model (DEM). However, a small modification of this type of file is necessary to work with it in Blender. This process is covered in depth in the best post on using Blender to create shaded reliefs: Daniel Huffman’s Creating Shaded Relief in Blender.

One of the problems I found was how to combine Elevation data with Bathymetry data. The best idea I had was to create a few functions that use GDAL to filter values above and below zero, perform a resampling to make sure that the two data sets had the same resolution and finally merge them into one file.

function filter_values(){
    file_name="${1%%.*}"
    input=${1}_clipped.tif
    calc=$2
    echo "Filtering values from ${1}..."
    gdal_calc.py \
        --quiet \
        --overwrite \
        -A $input \
        --calc=$calc \
        --outfile ${file_name}_filtered.tif
}

This function was then used as follows:

filter_values srtm "(A>0)*A"
filter_values gebco "(A<0)*A"

A resampling of the data is performed to avoid conflicts related to different resolutions:

function resample(){
    file_name="${1%%.*}"
    input=${1}_filtered.tif
    output=${file_name}_resampled.tif
    gdalwarp \
        -overwrite \
        -of GTiff -co COMPRESS=DEFLATE \
        -ts 1000 1000 \
        -r cubic \
        $input temp.tif

    gdal_translate \
        -of GTiff -a_nodata 0 \
        temp.tif $output

    rm temp.tif
}

Finally, a merge of the two files is made:

function merge_files(){
    file_name1="${1%%.*}"
    file_name2="${2%%.*}"
    input1=$1
    input2=$2
    output=srtm_gebco_merged.tif
    gdal_merge.py \
        -o temp.tif \
        -init 0 \
        $input1 $input2

    # fill no data values
    gdal_fillnodata.py temp.tif $output
    rm temp.tif
}

With these steps we get a TIFF file with bathymetry and altimetry data. Finally, I used the great blenderize script by Nick Underwood (enlace) that allows to scale the values, project to your desired CRS, etc. and get a height map ready to work in Blender.

Blender was used only in the locator map that opens the piece. In the article there are other interesting elements such as a locator of the Guerrero Gap or a large map of Mexico that collects all the earthquakes in the area during the last century.

Población

Sismos

Sismos de gran magnitud (+7)

Estados

Unidos

200 km

Torreón

Monterrey

Placa

norteamericana

México

León

Ciudad de México

MICHOACÁN

Guerrero

OAXACA

Placa de Cocos

El Salvador

Los Estados de Michoacán, Guerrero y Oaxaca concentran el 80% de los terremotos producidos en el último siglo

200 km

Sismos de gran magnitud (+7)

Población

Sismos

Estados Unidos

Ciudad Juárez

Golfo de México

Torreón

Monterrey

Placa norteamericana

México

León

Mérida

Ciudad de México

MICHOACÁN

Guerrero

Océano

Pacífico

OAXACA

Guatemala

Belice

Placa de Cocos

El Salvador

Los Estados de Michoacán, Guerrero y Oaxaca concentran el 80% de los terremotos producidos en el último siglo

Sismos de gran magnitud (+7)

Población

Sismos

200 km

Tijuana

Estados Unidos

Ciudad Juárez

Golfo de México

Torreón

Monterrey

Océano

Pacífico

Cuba

Placa norteamericana

México

León

Mérida

Ciudad de México

Mar del Caribe

MICHOACÁN

Guerrero

OAXACA

Los Estados de Michoacán, Guerrero y Oaxaca concentran el 80% de los terremotos producidos en el último siglo

Guatemala

Belice

Placa de Cocos

Honduras

El Salvador

These maps were made with QGIS and Adobe Adobe Illustrator and were published through ai2html.

Conclusions

Until the moment of working on this article I had never used 3D software even though it was something that had always caught my attention. As in any field when you start is hard and making a simple diorama cost me more than planned but I learned along the way, I lost the fear of Blender and today is one of my favorite tools and I use whenever I have the opportunity.

What would you change today from the article? Two ideas come to my mind: the design, the composition of the diorama is designed for desktop and does not work on mobile. I would probably not mess around processing the batting data and would use the GEBCO data directly. They are fantastic and for the scale of the map it is more than enough resolution.

You can take a look at the article here.